

    
      
          
            
  

          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Contributor Covenant Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.




Our Standards

Examples of behavior that contributes to creating a positive environment
include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or
advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic
address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting







Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.




Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at dgvai.hridoy@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.




Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq







          

      

      

    

  

    
      
          
            
  
TimeMachine

TimeMachine, extenstion of PHP DateTime


Version 1.0





Documentation

Here is a short documentation on this class, here you will find the public methods and enumerators of TimeMachine.
More detailed examples are given in the examples directory.




Getting Started

You just have to include or clone this class file to you workspace! That’s all!




Public Methods


__construct()

  // structure
  public __construct([string $timezone = null, string $timestamp = null])
  
  // example
  $TMObj = new TimeMachine();                       // instantiating "now" time in default Time Zone
  $TMObj = new TimeMachine(Zone::DHAKA);            // instantiating "now" time in ASIA/DHAKA Time Zone
  $TMObj = new TimeMachine(Zone::DHAKA,1957333457); // instantiating time from UNIX TIMESTAMP in DHAKA Time Zone
  
  // returns
  TimeMachine object








GetTimeZones()

  // structure
  public static  GetTimeZones()
  
  // example
  $TimeZoneArray = TimeMachine::GetTimeZones();
  
  // returns
  array()








SetTimeZone()

  // structure
  public SetTimeZone(string $ZONE)
  
  // example
  $TMObj = new TimeMachine();                       // instantiating "now" time in default Time Zone
  $TMObj->SetTimeZone(Zone::DHAKA);                 // setting Time Zone to DHAKA
  
  // returns
  TimeMachine object








SetTimeStamp()

  // structure
  public SetTimeStamp(int $TIMESTAMP)
  
  // example
  $TMObj = new TimeMachine();                       // instantiating "now" time in default Time Zone
  $TMObj->SetTimeStamp(1984735338);                 // changing time to the UNIX TimeStamp
  
  // returns
  TimeMachine object








DateTimeFromString()

  // structure
  public DateTimeFromString(string $DATETIME_STRING)
  
  // example
  $TMObj = new TimeMachine(Zone::DHAKA);            // instantiating "now" time in DHAKA Time Zone
  $TMObj->DateTimeFromString("18-09-2019");
  $TMObj->DateTimeFromString("2019/09/18");
  $TMObj->DateTimeFromString("1st sunday of March 2019");
  $TMObj->DateTimeFromString("Last friday of last week of April 2019");
  $TMObj->DateTimeFromString("next week");
  $TMObj->DateTimeFromString("2 months later");     // all available datetime strings
  
  // returns
  TimeMachine object








Interval()

  // structure
  public Interval(string $INTERVAL [,string $DATETIME = "now"])
  
  // example
  $TMObj = new TimeMachine(Zone::DHAKA);            // instantiating "now" time in DHAKA Time Zone
  $TMObj->Interval(Interval::MIN_5);                //  current $TMObj is +5 min of "now" time
  $TMObj->Interval(Interval::HOUR_6, "09:56 PM");   //  current $TMObj is +6 hours of 9:56PM in DHAKA TimeZone

  // returns 
  TimeMachine object








GetDifference()

  // structure
  public static GetDifference(TimeMachine $DT1, TimeMachine $DT2, Difference::RESULT_TYPE [,bool $absolute = false])
  
  // example
  $now = new TimeMachine(Zone::DHAKA);                //  Generatig DateTime 1
  $then = new TimeMachine(Zone::DHAKA);
  $then->Interval(Interval::MIN_5,"10:06 AM");        //  Generating DateTime 2
  $difference = TimeMachine::GetDifference($now,$then,Difference::ASSOC);
                                                      //  Getting their differences as ASSOCIATIVE array
  // returns 
  Difference::ASSOC =>  array()
  Difference::OBJ   =>  TimeMachine object








GetPeriod()

  // structure
  public static GetPeriod(TimeMachine $Start, TimeMachine $End, string $PERIOD [,string $format = 'r'])
  
  // example
  $start = new TimeMachine(Zone::DHAKA);              //  Generatig DateTime 1
  $end = new TimeMachine(Zone::DHAKA);
  $end->DateTimeFromString("2019-12-07 13:56");       //  Generating DateTime 2
  $period = TimeMachine::GetPeriod($start,$end,Period::A_MON,Format::DATE_MYSQL);
                                                      //  Getting array of periodic time
  // returns 
  array()








CheckLimit()

  // structure
  public static CheckLimit(TimeMachine $DateTime, string $Limit)
  
  // example
  $now = new TimeMachine(Zone::DHAKA);
  $limit = '9:50 AM';
  $bool = TimeMachine::CheckLimit($now,$limit);       //  Returns true if limit does not cross, false in other case
  // returns 
  bool








CheckBetween()

  // structure
  public static CheckBetween(string $Start, string $End, TimeMachine $DateTime)
  
  // example
  $now = new TimeMachine(Zone::DHAKA);
  $start  = '9:00 AM';
  $end    = '10:00 AM';
  $result = TimeMachine::CheckBetween($start,$end,$now);
  // returns 
  Object








Show()

  // structure
  public Show([string $format = 'r'])
  
  // example
  $TMObj = new TimeMachine(Zone::DHAKA);                //  Generatig DateTime
  echo $TMObj->Show();                                  //  Prints DATETIME 
  echo $TMObj->Show(Format::DATE_MYSQL);                //  Prints DATETIME in Mysql DATE format
  echo $TMObj->Show(Format::BLOG);                      //  Prints like Sunday, July 21st, 2019 12:16 PM
  echo $TMObj->Interval(Interval::HOUR_1)->Show()       //  Chaining 
  // returns 
  string








Get()

  // structure
  public Get(Time::TIME_VARIABLE)
  
  // example
  $TMObj = new TimeMachine(Zone::DHAKA);                //  Generatig DateTime
  $TMObj->Get(Time::NOW);                               //  Get NOW
  $TMObj->Get(Time::NEXTWEEK);                          //  Get ... ...
  $TMObj->Get(Time::PREVMONTH);                         //  Get ... ... 
  echo $TMObj->Get(Time::T_30MIN)->Show();                
  // returns 
  TimeMachine Object










Enumerators


Since PHP does not have enumurators, constants in classes are used as static enumerators




Enumerators comes in several classes they are used for. Some string enumerators can be passed as string as parameter directly
to work. You can also define your own enumerators in these classes to ease your work and to enhance this library.


Note If you use a code editor or IDE like VS Code (… etc), these enums will suggest to ease your coding!





Zone

Zone class contains string constants of PHP DateTimeZone::ALL

Zone::DHAKA is actually 'Asia/Dhaka' string.

There are 424 ENUMS in these class.




Format

Format class contains const strings of PHP DateTime->format() as enums

Format::DATE_MYSQL is actually 'Y-m-d'

Available ENUMS in Versin 1.0:

DATE_MYSQL, TIME_MYSQL, DATETIME_MYSQL, DATE_INT, DATE_SLASH, DATE_ASIA, ISO, BLOG, TIME_CLOCK, TIME_CLOCK12




Time

Time class contains const ints of TimeMachine->Get() constants as enums

Available ENUMS in Versin 1.0:

TODAY, NOW, NEXTWEEK, NEXTMONTH, NEXTYEAR, PREVWEEK, PREVMONTH, PREVYEAR, T_5MIN, T_10MIN, T_30MIN, T_1H




Difference

Difference class contains const ints of TimeMachine::GetDifference() constants as enums. These are fetch type of result.

Available ENUMS in Versin 1.0:

ASSOC, OBJ




Interval

Interval class contains const strings of PHP DateTimeInterval() as enums

Interval::MIN1 is actually 'PT1M'

There are 16 available INTERVAL ENUMS in Versin 1.0. Try a code editor suggestion to get them.


In advance cases where you might need personalized intervals, follow PHP DateTimeInterval() Formats. Click here [https://www.php.net/manual/en/dateinterval.format.php] to read PHP documentation.







Period

Period class contains const strings of PHP DateTimeInterval() as enums

Period::A_DAY is actually 'P1D'

There are 6 available INTERVAL ENUMS in Versin 1.0. Try a code editor suggestion to get them.


In advance cases where you might need personalized intervals, follow PHP DateTimeInterval() Formats. Click here [https://www.php.net/manual/en/dateinterval.format.php] to read PHP documentation.












          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          <no title>
        


      


    
  

_static/file.png





_static/ajax-loader.gif





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





